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In the problem of diffraction of a wave of arbitrary form by a wedge, It is 
shown how to obtain any number of terms of the geometric acoustical expansion 
of the diffracted wave near its front from the known solution of the problem 
of diffraction of a plane wave by the same wedge, The method which Is set 
forth provides the exact solution in the entire region for certain problems 
of diffraction of cylindrical and spherical waves. 

1, We consider the two-dimensional problem of diffraction of a wave of 

arbitrary form with curved or straight front by an obstacle In the form of 

an angle (wedge). The wave propagation is described by Equakon 

in the region 0 < cp < c 

For t < 0 the function 

the faces of the wedge, 

three types 

u1* = uxx + GJ] (1.1) 
, where X -= rCOS(p, y = r sincp, 0 <a < .k. 
u(t,x,y) is specified (the Incident wave). On 

cp=O and cp=c, boundary conditions of the 

(a) u=o, (b) .g = 0, (c)';-c'; (c > i)) (1.2) 

are given, where a/an is the derivative in the direction of the inner nor- 

mal to the boundary. We do not exclude cases In which one of conditions 

(1.2) is glven on one face and a different one on the other face. When the 

incident wave is plane, the exact solution of this problem Is known [l and 

21 * The problem of diffraction for any boundary condition of the form 

(1.3) 

can be solved by this same method If the solution for the problem of dlf- 
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fraction of a plane wave with the same boundary conditions has previously 

been found (e.g. by the method of [2]). 

Let the front of the incident 

wave MN reach the vertex of the 

angle at the Instant t=O and 

let the ray which strikes this 

point make an angle fl with the 

Ox-axis (Fig. 1); U = 0 ahead of 

M a) 

N a 

% 

a 

t4 

b) 

the front. The wave fronts are 

shown In Fig. 1 In the case when 
Fig. 1 

rr/2C@<a-rr. All the results remain valld.for other relations between 

a and B . It Is only necessary to take into account that the number and 

location of the reflected waves will then be different. 

2. We represent the solution U for t > 0 in the form U = U+U+W . 
The function u Is equal to zero Inside the angle COD (Fig. lb) and takes 

on the same values outside this angle which the incident wave would have 

were there no obstacle. The function u Is nonzero only In the region OEK 

and takes on the same values there that the reflected wave would have If the 

entire straight line y = 0 were the boundary Instead of the a&e. ‘The 

reflected wave Is found by well-knownmethods (see below Section 5). 

The function w Is the diffracted wave which is to be found. Clearly, 

w # 0 only In the circle ABCD . 

In order that the function LJ = u +v +m be continuous and represent the 

solution of the problem which has been stated, the function m must satisfy 

the following requirements. In each of the sectors A09, BOC and Coi, It 

is bounded and satisfies Equation (1.1); on the sides of the wedge OA and 

(ID w satisfies the boundary conditions (a)(1.2), (b)(1.2), or (c)(1.2); 

on the arcs AB, BC and Cz, we have w = 0; on the radii OC and OB 

the dlscontlnuities 02 the function w and of Its derivative in the direction 

normal to the radius are equal In magnitude and opposite in sign to the dls- 

continuities of the function u+v and of its derivative, I.e. 

[WI 4 = PO (t, r), [WI,+ = p1 (t, r) 
3W 

[ 1 
= vo 0, r), 

aW 

[ 1 1 a (2.1) 
- 
an x+,3 an I;-p 

=vl(trr), +-- 
r acp 

where pa 3 v1 , v. and v1 are known functions defined for O<r<t; the 

the symbol [ ] denotes the magnitude of a discontinuity, for example 

Iwl,,, = w (t, r, n + p + 0) - w (t, rr n + p - 0) 

3. Let U*(t,x,y) be the solution of the problem of diffraction of the 

plane wave which Is specified for t c 0 by Formulas 

(3.1) 
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The solution was obtained In [l] for the case of the boundary conditions 

(a)(1.2) and (b)(1.2) and In [2] for the case (c)(1.2). The specific form 

of this solution is not needed at this point. Let f0(7) be a function which 

Is equal to zero for 7 < 0 . 

We set 

fi (z) = i @ ;(f-’ f(J (s) as (i > 01, l?(i)ls a gamma functlon(3.2) 

0 

U2" (t, n, y) = g-r u* (t - s,x,y)fi(s)ds (i=O,1,2,...) (3.3) 
I 0 

Then 
$+, (z) = fi (z) for i>,o 

Ui" (t,.5, y)~ fi (t +- 5 cos p + y sin (3) (t<o) (3.4) 

By virtue of (3.3) each of the functions U,' satldfles Equation (1.1) 

and the same boundary conditions as the function U*. And so, CJ,O Is the 

solution of the problem of diffraction of the plane wave of the form (3.4). 

As In Section 2, we shall represent 

Ui" = &.a $ ViQ + 

Then 

Ul a In the form 

Wi’ for t>o 

Iwi”l,+p = fi 0 - I’), ihi” I dn]n+p = 0 

Taking j0 (7) = 70/n! we obtain functions m with discontlnuitles of the 

form onC7", where 7=t-r. 

In order to obtain functions m with the discontlnultles c,~T~P*, we 

differentiate II,' with respect to the angle @ . Considering that /i'=J_l, 

we obtain from (3.4) 

au,0 
- z 

aw,O 
43 - Mi-1 0 + 87 - E - E/i_, (l + E) + q2fi_2 tt + E) apz (3*5) 

for t < 0, where 

&= XCOS~ + ysinp, q__g= xsinp - ycosp, all q=j 

so that for any function u 

We introduce the notation 

a 
A2a-1 = ap ( a2 ap” t ’ 12)(& + 2”) . . 

Uim 

. (6 + (s - 1)8) , A2s = 6 h-1 

= R,Ui” (3.8) 
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Since the unctions U,* are derivatives of the solution iii0 with respect 

to the parameter 8 , they satisfy Equation (1.1) and the boundary conditions. 

For t < 0 they are the waves with plane fronts obtained from (3.4) in 

accordance with Formula (3.8). As In Section ?, we set 

Uim = Uim + Vim + Wsirn 

In order to compute the discontinuities of the functions w,~ and of their 

derivatives on UC It is necessary, according to Section 2, to find the 

values of UI* and aU,*/an on OC under the assumption that the obstacle 

(wedge) is absent. The functions (I,. will then be expressed by Formulas 

(3.4), (3.7) and (3.8) for t > 0 also. It can be seen from (3.5) and (3.6) 

that a~U,"/aS~ is an even function of n for even m and an odd function for 

odd m . Since on IIC , i.e. cp = 

then 
n+B 9 we have ri = 0 and a/an = a/&j, 

aCr,2k 
I -3-F = 0 
X+P (3.9) 

that (3.10) 

((2k-if!! = 1.3.5. . . . * (Zk- 1), (--l)l!=i) 

u%- In# = 0, 

tie shall now prove by inductlon 

u;k]x+B = (2k - Q!! rkfi_k(t - r) 

This is true for k = 1 in view of (3.8), (3.7) and (3.5) and since 
T=--r,n=O on oc. Let us assume that Formula (3.10) is true for some 
k>l- We have from (3.7) and (3.8), 

;q- = ($ + J$) Uizk 

By virtue of (3.6), we have for any function u 

(3.11f 

(3.12) 

As a consequence of the invariance of the Laplacian operator underrotation 
of the coordinate axes, it follows from (1.1) that 

awiw = avIc3p 4- av ia+ 

From this result and from (3.12) we obtain on OC , i.e. for n = 0 , 
5 =-r 

au 
-Tar (3.13) 

Now we get qzk+2 ]x+p = (2k + 1) !! ‘k+lf&k_l ft - ‘1 

from (3.11), (3.13) and (3.10). 

Formula (3.10) Is, therefore, valid for all k . 

Since (t/an = a/an = 5-l ala8 on UC , we have from (3.6) to (3.10) that 

Taking Into account what has been said about the discontinuities of the 

functions Wl', we obtain from (3.9), (3.10) and (3.14) 
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ILui3n+p = (2% - I)!! ryi (t - r), bipl --- 0 n+p - 

[---I ~- awi$ 
(3.15) 

an x+8 
_ (), 

[ I 
a$-1 

x+/3 
= - (2k - I)!! 'Jy (t -I') 

4. The diffracted wave m which is sought (see Section 2) will be ap- 

proximated by the linear combination ml= CC~~W,~ of the functions wlkwhich 

were constructed In Section 3. The coefficients olr are chosen so that the 

functions m1 and awl/an have discontl;luitles on CC which are equal to 

the p,(t,r) and v,(t,r) in (2.1) Correct t0 infiniteSiir&S Of a specified 

order in the vicinity of the point t=O,F=O. This can be done if the 

incident wave is represented by a sufficiently smooth function, since the 

functions uO and V, then have the Taylor expansion In 7 and F (T= t --r) 

(4.1) 

We take 

f. (z) = rN+il (Iv + i)! (r> O), I fi (z) = 0 l.t < 0) 

By virtue of (3.15) the discontinuities of the funct!on 

and of the derivative awl/a72 on CC differ from u,, and V, only by 

o(Pt') and o(+t~-l) . The discontinuitles on CB will also differ only 

slightly. (For the boundary conditions (a) (1.2) and (b) (1.2) this follows 

from the well-known law of reflection 7' (f. J, u) := T u (t, X, -. y) ; for 

case (c) (1.2) It is proved in Section 6). The function u + u + m1 is an 

approximate solution of the diffraction problem posed in Section 1. It dif- 

fers from the exact soiution u + v + m by the quantity ml_ w , which, as 
is shown In Section 7, is small In the zone near the front compared to the 

functions wig which enter Into (4.3). 

We remark that in 
derivativesalui+,, il a$, 

the derivation of Formulas (3.15) In Section 3 the 
1 < 2k .< 2s were used. These derivatives exist 

if N Is sufflclently large. Therefore, Formula (4.3) Is justified at 
present only in the case when the lncldent wave can be expanded according 
to (4.1) and (4.2) with sufficiently largeN,N >N,. If, however, N < N,, 
let us Integrate the Incident wave (N.-N) times with respect to t . The 
wave which Is obtained can be expanded in accordance with (4.1), (4.2) with 
N = I, . Therefore, the function (4.3) may be wrltten for this wave. We 
obtain the function m1 for the Incident wave given originally by dlffer- 
entiation (N,-N)times with reSpeCt to t . This proves Formula (4.3) for 
all N ,>. 0. 
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If the coefficients elk in the expression &= Zoirwik are chosen so 

that the d&continuities [wl],+,_ and t&9 / an] , which are determined with 
the aid of Formulas (3.15), uniformly approxlma?e’the functions II, and V, 

in (2.1) in the entire region 0 < r < t < t,, where t1 is any constant, 

then the function m1 will serve as an approximation to the unknown diffrac- 

ted wave w in the entire cone x2 + yz < t2 < t12 (in the case of the 

boundary conditions (a) (1.2) and (b), (1.2)). This follows from the estimates 

of Sectlon 7. 

5, We shall now study some properties of the reflected wave. Let the 

function ~(t,sc,y) satisfy: Equation (1.1) for t > () in the reglony > 0, 

the boundary condition (1.3) for y = 0, and the Initial conditions LI= c;(x,y), 

v,= $(x,r/) for t = 0. The solution u of Equation (1.1) in the region 

- m < g < m having the initial conditions It = fp (Z, ,U). Zt = 9 (2, Y)for 

y > O,and u = 0, Ut z: 0 for p < 0 is called the incident wave. The 

function v = U - u Is called the reflected wave. 

Lemma on the shift of the boundary . 
If u(t,n,g) is the wave reflected from the boundary y = 0 , then for any 

h > 0 the function V* (t, 2, y) G V (t, 2, $I -b 2h) In the regdon $4 > - b 
is a wave reflected from the boundary I/ = - h with the same boundary con- 

ditions (1.3) (f or the same Initial conditions u = rp, a,=$, t=O, the 

definitions being extended to cp = JI = 0 for g < 0). 

Proof. It is easy to see that 
for Y 2 - h the function 

u(c,n,v) = 0 for 0 <t <Y and that 

g*ct, 2, Y) = CJ (t, 2, Y) -I+ v (6 I, Y + 2h) 

satisfies Equation (1.1) and the boundary conditions indicated In Lemma. We 
shall show that the function C ‘* satisfies the boundary condition (1.3) for 
y=-h, i.e. that N(t,x,h) = 0 , where N (t, x, h) ~1: 1 (U*) j~,=7__h. We have 

Analogous equations hold for al(u)/ah and for the second derivatives 
with respect to a%, t and x . Since u and u 

- 9 
satisfy Equation (1.1) , 

i 32 --a iv (t, 2, h) = 0 (t 23 0, h > 0) 

for 
Fu;theFre, 

h > 
N (t, 2: 0) -= 1 (U f 0) $,, = 0 

0 we have IV = 0, $1~ / at = 0 
by virtue of (1.3). 

u (1, x,.y) -1” 9 for 0 < t < y). Thus the function 
(since 

Finally, 

~(t,x,h) 
U = 0 forO<t<--y, 

satisfies the wave 
equation and zero initial and boundary conditions. St Is, therefore, equal 
to zero. 

Corollary. The function U (r, 5, 2~ --fZ) -i_ U (t, 2, !j i--j&) satis- 

fies the boundary condition (1.3) for v = 0 for any ,& > 0,i.e. 
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We shall now establish the connection between the values of the incident 

wave on the plane x sin g - Y cos g = 0 and the reflected wave on the sym- 

metric plane Y sin 8 + y cos B = 0 in the case when the boundary condition 

(1.3) is satisfied for y = 0 . We introduce new systems of coordinates 7, 

p, n which are different for the Incident and reflected waves. For the 

incident wave 

p = -5 cos p - y sin p, n = 5 sin p - y cos /3, z=t--p 

and for the reflected wtrve 6/ is replaced by - I/ in these formulas. 

Lemma. Let us assume that on the plane n = 0 Formulas 

M N-i 

22 = 2 ZI] tZij$+O(t”)f 

M-l M-i-1 

(5.2) 
+.=I j=o * f 

2 = 2 2 bij ‘8 + O(tMP-l) 

i=l j=o 
. * 

are valid for the Incident wave in the vicinity of the origin when t > 1 p! 
and that analogous formulas hoid for the reflected wave u , but with the 

coefficients cl, and di, . Then Cij (i + j < M) and dlJ jt+jBM-1) 

depend only upon aij (i + j < M), bij (i + j < &f - I), the angle 8 and 
on the coefficients gppr of the boundary condition (1.3). They do not de- 

pend on the other parameters of the incident wave. 

Proof. 
(c) (1.2); 

We shall carry out the proof for the boundary condition 
in the case (1.3j the .arguments are similar. By virtue of (5.1) 

we have 

uw (t, x, - h) + nv (t, z, h) - cut (t, x, -- h) - ~73~ ft, 2, f4 = 0 for h >, 0 

Transforming to ‘I, p, n, we get 

(vp - ap - U, + u+) sin f3 + (On - qJ Cm P - c (u, + I’,) = 0 (5.3) 

where the values of 7, p and n are one and the same for u and v 

p = h sin 8 - J: COS 6, n = x sin p + h cos p, t=t-p, h>O 

And so Equation (5.3) Is valid in some region of the space 7, P, n which 
adjoins the origin coordinates. Differentiating (5.3) with respect to n 

‘and making use .of the fact that u and u satisfy Equation (l.l), i.e. the 
equation 21/,, = U,, + Cl,,,, we obtain 

(5.4) 

(vpn - apn - 2’7n + u,J sin P + (2~7,~ - 2a,F - rrp + up& Coa P - CUT, - Cv,, = 0 

substituting (5.2) and (5.3) into (5.4) and comparing CoeEficients of 
7lPJ/ t!j!, we get 

(C - sin P) Ui+l, j + (C + sin PI Ci+l, j = (Ci, j+l - ai, j+l) sin P -f (dij - b$j) CoS P 

(c - sm PI 6i+l, j 4 (C + sin P) di+l j = (di, j+l - b,, j+l) sin P + 

+ (aie j+s - ci, j+3 cos P f ii (‘*Cl, j+l -- ‘i+L, j+l) ‘OS P 

where $ = 0, 1, 2,. . ., j = 0, 1, 2.. ., with a0 ,= b. J= d =o. 
Since c + sin @ # 0 , it is possible to find c1 j = 0, 

et&. Th 
n:=2:9:. first 

from these formulas, then al,, then c2,, dz,, e assertion Is then 
proved. 

Note. It can be shown that in the case of the boundary conditions 
(1.3) 
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C 03 ’ = kU*j, ‘ij = 4 &b6 tk) “i-6, j+r - 4 (~f:‘i) j %6-l tk) 'f-8, j+6-l 

where the A, are the same a8 in (3.7) and k = k(S) Is the tiown reflection 
coefficient for plane waves 

k(P) =-*), n(p)= 2 gpqr cos% sin’@ (5.5) 
p+q+r=n 

6. We now estimate the dlscontlnulties of the functions &- m and 

a(&-&/& on 0~ in the case of boundary condition (c) (1.2). Let the 

functions y, (~1, pl, w be the same as in Section 4 and U1 be the sum of 

the solutions U,' constructed in Section 3 wlth the same coefficients as 
in Formula (4.3). Then, as In Section 2, U’ = u1 + v’+ w’, *here $ is an 

Incident wave, v1 the reflected wave, and w1 the diffracted wave. The 
function WI here is obviously the same as in (4.3). Since the function ff', 

the exact solution U - u + v + U) , and the incident waves u and u1 are 
continuous on OS , i.e. for cp = n - S , then [w' -WI,_@ = - I+-- vl,_p. 
The same conclusion can also be drawn concerning the derivatives a/an . The 
coefNclents in Rxnniia (4.3) have been chosenso that the functions 3 and &?/an 

on 0C have the same coefficients In a power series expansion In 7 and r 

as u and au/an have in (4.1) and (4.2). Then according to the second 

lemma of Section 5, the same holds for VI, av'/an and v, au/an on OR ; 
here g - N + e . Therefore 

29 -- VI,_11 =: o(P), d (c' - U) / drz &.+ = o (t”-‘) 

From this it follows that 

[w' - Wln_p = 0 (t"), (6.l) 

To justify the applicability of this lemma it must be shown that the re- 
flected wave exists and admits an expansion analogous to (5.2). This follows 
from (43 for a sufficiently smooth Incident wave. It Is even possible to 
obtain an explicit solution by the method which Sobolev used to find the 
solution of the problem of propagation of elastic waves for the case of the 
half plane Cl], PP. 509-559. 

7. We now estimate the difference w1 -_ut . 
that the function w1 -u) 

It follows from the preceding 
satisfies Equation (1.1) In the region I' C t ex- 

cepting the planes CJJ = n - S and rp = n + S , which are represented by the 
lines 03 and OC in Fig. 1, where the function and Its derivatives have 
the discontinuities 

[w' - wJ = /$* (t, r) -= @ (& vi* (t, r) = 0 (P-') 

for OC $ - 0 , for 08 t = 1 . Further, for r = t the function wl- ~1 
equals zero and for 
(a) (1.2), (b) (1.2), 

93 = 0 and -a satisfies the boundary conditions 
or (c) (1.27. We shall consider that the functions 

***and vl* have der vatives up to the fourth or er. 
w,+ being equal to 0 t 
incident wave is 

(fk-k), k < 4, and of v** - o r,.~-k-l)t~~hki~ho~~~a~~~~~f 
suf iciently smooth). Let us replace t by T + r and 
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expand pt* and v,* according to Taylor’s formula 

Pi * = p: (Z) Ji ‘PC (Z) + “pi Cz, ?)9 vi* = vi0 (t) + PYil (T, r) 

Obviously 

I”; = 0 (P), /.Q = 0 (+.f), yi 0 = o (TM-‘) 

pi* = 0 (P-s), vi1 = 0 (P2) , for t-0 

In the cases of boundary conditions (a) (1.2) and (b) (1.2), let 

c* zzz E,l -_w - W 

w = $ 
{ 
$J is’ Wj2j (t - s, 2, y) dpp (5) - jr Wl’ (t - s, 5, y) dV10 (s) 
j=o 0 0 I 

where W, k is the same as in, Section 3, ?= x?-+ 9. Then 

it Is easy to see that the discontlnultles on OB are also equal to 

90 C tMm2) and ro ( tMp2). 

In the case of boundary condition (c) (1.2) it is also possible to con- 
struct a function s* with discontlnulties of the same order, but to do this 
it is necessary to add terms with discontlnuitles on only OB to the function 
W (we shall not dwell on this point in greater detail). 

Let us take a small h > 0 and construct a function z which coincides 
with s* outside the sectors S,, defined by the inequalities 

! ~ - pi ! ~ “, f- <& (i =Y 0, 1; $,, = ;I + p, p, = n - p) 

and which is continuous together with the derivative as/av In these sectors, 
including their lateral boundaries 

_:p $_ (\!$ 
rVil 

z xz y 2 sjgy (E; ..~ T) -I- 3/c 
1 

f/L - I ‘F -- & I)? for j cp -- 3i j < h 

Then z satisfies the same boundary conditions as w1 - 2 and Equation 

;;I - -Xc - 3 ?I?1 :=: f (t, T, y) (7.1) 

Here J” = 0 outside sit f = h-c o!t M--P) in s . The last estimate fol- 
lows from the properties of pt, vI and their dekivatlves. We now estimate 
the “energy” 

1; (L) :=- 
ci 

2 .i- . , Lx 2 _+. z 

ii” 

i!.,; ?12f it%& 

of the solution z at the instant t = t,>o. Xntegrating by parts and 
taking (7.1) into consideration, we obtain 

where r is the boundary of the region ~(0 < cp -=z a) traversed in the posi- 
tive direction, and sn is the derivative in the direction of the inner 
normal to I’ ; we note that t = 0 for r> t In the case of the boundary 
condition (c) (1.2) we have 
in the cases (a) (1.2) and 

= azt . 
(b$‘(1.2) 

so that tne contour irtegral 20, and 
It equals zero. Therefore, 
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Intergrating and taking Into account that E(O) = 0 , we get 

Let us estimate a near the front r = t for t > t, . Let Z7 be 
the zone at the front given by 

t--<r<t, O<cp<% !TJ-- P; l>h+$ (i = 0, I), 11 > 0 
T zm= t, (i -- cos$), 

It Is easy to see that because of the finiteness of the velocity of propa- 
gation of the waves, values of the function f In the sectors S, for t> t, 
do not affect the values of z In the zone 2,. Since f = 0 outside these 
sectors, the energy Included In' the zone Z7 at the Instant t , I.e. 

does not exceed the entire energy which was present at the Instant t,, I.e. 
E(t, ). !h&s, the energy of the solution z In the zone 2, near the front 
equals 0 (Fy. 

In this zone wik = 0 (~.~+~+'i2y-'/Z) . Using the corresponding estimates for 
the derivatives, we may conclude that the energy of the solution W Is also 
;~l&oz;;;s"). Thus, the energy of the solution ml-m Is equal to o(t"';. 

. 
In Formula (4.3) Equations m,J were of the highest order of small quantl- 

ties near the front; In the zone Z7 

Wsj = gsj (z, p, V) T-~+~il/~r-~i~ 

where J Is a smooth function. 
Is equaP't0 O(ts"). Thus, 

Therefore, their energy In the zone 2, 
the error of Formula (4.3), I.e. ml- u), Is an 

lnflnlteslmal of higher order compared to any term of this formula In the 
zone Z7 at the front as 7 + 0 . 

8, In the case where the front of the Incident wave Is a circular arc 

convenient formulas can be derived for any number of terms of the geometric 

acoustical expansion of the diffracted wave. (This case Is the most lmpor- 

tant one, since It permits consideration of the diffraction of a wave due 

to a point source, and also of multiple diffraction by the vertices of a 

polygon,* by a segment and by a slit). 

We shall now Indicate some properties of the geometric acoustical expansion 

of an arbitrary wave with a circular front. For t > t, let the front be an 

arc of the circle p = t - \,, (In polar coordinates p, e), and let the wave 

Itself be specified by Formulas 

l By a Simpler method than this wab done in [6]. 
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U==O for z<o, for z>O (8.1) 

Here the y, are the same as in (3.2), 

Then (see 153, Formulas (27) and (34), where to transform to the notation 

of this paper cp must be.replaced by u , g by P , IP I-h by A,). 

From this, 

A, = -Lz (e), 
p’!2 Al= -&Jjg++2q+y.. . 

wher,e ate), b(B),... are arbltrLry functions of 0 . First we examine 

case In which these functions, beginning with b(8), are equal to zero. 

then obtain 

the 

We 

A, = (- w& @! 
1 xii, oi+*/' ’ L,+g+(;j2)(&+ ($1, . . . (G+(i -3)“) 

If the function o(e) Is analytic, the series 

co (- l)iL,;a (8) 

23 xii! pi+‘/z fi (4 = F (p, f. (4, a W) 
i=n 

converges for 0 < 7/p < yO, In which y0 depends only on the 

vergence of the power series for a(e) . 

We now consider the case In which b(B), c(e),... may also 

(8.2) 

radius of con- 

be nonzero. 

Any wave (8.1) with a circular wave front may then be represented In the 

form 

u = ~(~,f,(+,40)) + F(P,~,(+ b(e)) + F(P, fat+ 43)) + . ..+ RmtI 

where the remainder term I),,, Is of the same order as At+1 ln (8.1). It 

suffices, therefore, to examine the problem of diffraction of a wave of the 

form (8.2). 

Let the angle which gives rise to the diffraction be the same as In Flg.1, 

and let r, cp be polar coordinates with pole at the vertex of the angle; 0. 

The center of the Incident circular wave Is the point 0, (P = R, rp = B), 

and p and e are polar coordinates with pole OO. The Incident wave Is 

assumed to have the form (8.2), where 

fi (z) := rN+i / r (N + i + 1) for z>o 

In order to find the diffracted wave It Is necessary (see Section 4) to 

expand the functions u and au/an on OC In Taylor series In r (weh&ve 



r=p- I), au/E% = F""au/M on 00) and to substitute into (4.3) the coeffi- 

cients obtained from (4.1) and (4.2), 

(- j)++* (2i + 2k- l)il L ?a 
iz$k = 

a* 
2k (2i)t ~“+k++% ’ 

b 
ik 

= (- f)*+* (Zi + 2k + I)lt L;+,a 

ZR (2i -t_ i)! Ri+*+*A 

after setting 0 = n + S . 

We shall now write out the geometric acoustical expansion of the functions 

~0, in (4.3). The solution U*(t,n,y) in Section 3 is a homogeneous function 

of degree zero. 

If fi (z)= ZN+i / 'r (H -/- i + 1) for 7 > 0 , then the functions Ual in 

(3.3) and (3.81, and so also the diffracted waves wP1, are of degree N + p. 

They can, therefore, be expressed by formulas of the'form (8.2) 

TNtptPt'r, 

r (AM 4- P + i + %) ’ 
Wp' = AiWpo @.3f 

We find from Elf that in the case of boundary condition (a) (1.2) 

k-1 
for the case (b) (1.2) It Is only necessary to change the sign of the first 

and fourth terms of the sum. For the case of boundary condition (c) (1.2) 

the function m can be determined from [2]. 

Substituti~ air> bi,, wp i into (4.3) and setting e = m (using well- 

known estimates for the derivatives of analytic functions, the absolute con- 

vergence of all the series obtained can be proved for sufficiently small 

7/r and T/R ), we obtain 

Noting that for any functions a and b 
47l 

I=0 

(this identity can be proved by induction on p f, we obtain 
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This series converges in some neighborhood of the front of the diffracted 

wave. The sphere of convergence shrinks to zero as we approach the singular 

points B and C (Fig. 1). 

The formula (8.4) was obtained for an incident wave of the form (8.2), 

where fi (z) = T;'v+i/ r (N -/- i + 1)for T > 0 . If the solution for this 
case is denoted by U,,(t,x,y), the solution U for the case of any integra- 

ble 4e(~) which is equal to zero for 7 < 0 is the superposition of the 

solutions cr,(2-=-sJ x, Y) 

u (6 5, Y) = atN+1 aN+l y UN (t - s, z, y) fo (4 r-&s 
0 

(8.5) 

since the incident wave is a superposition of the same kind. From this it 

is easily found that Formula (8.4) is also valid for such y0 , Here 

fn+t,, (z) In (8.4) is expressed in terms of yOg(7) by Formula (3.2). 

9. We now apply the results which have been obtained to the problem of 

diffraction of the wave caused by the simplest point source acting at the 

point r=R,cp=B at the Instant t = --A , i.e. the wave 

1 
U= 

2n v’ctt ff)S - pz 
(1 + R > PI 

Here p is the distance from the source to the point of observation. 

Setting t + I? = p + T we obtain 

@'2 

u - & r 82) 
for 

Therefore, taking 

a {e) S--L, 
2v-zn 

In (t5.2) and (c.4), we find the diffracted wave $. 

In the cases of the boundary conditions (a) (1.2) and (b) (1.2) the formu- 

las which have been obtained for IDI can be simplified further if it is noted 

that in these cases @"&,/ @a" s d2"m~ t%#e', s = 1, 2, . . ., and if the 

identity rnin (s, ji 

L2&2j = x 
f- v $1 i! (s + r-l! 

q! (s - 411 (i - 4Y (s + i - d1 

L2s+2i_zq 

q=o 

(which can be proved by induction on J ) Is used. The summation on j in 

(a.4) is then carried 3ut with the aid of the binomial theorem and the terms 

containing ~~~ with the same k are collected. We obtain 

From a comparison with (a.,), It follows that 
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Here m’(~,r,(p) Is the diffracted wave for the incident plane wave 

r% 1 u”=_=_ r P/Z) jF/ni 

which approaches from the same direction fl . Transforming from 7 to 
t = 7 + r , we obtaln 

w1 (z, r, cp) = * 
2n jfsz w t+tG, r,‘F) ( wt 

Here m($,r,cp) 1s the diffracted wave for the Incident plane wave which 

1s glven by Formulas 

* = I/r+rc:s(P-p) P>- r co.7 bp - BN, u = 0 (t <-r cos (cp - p)) (9.3) 

for t<o. 

With the aid of (8-5) we get the solution of the problem of the diffraction 

of the wave (9.3) CO 

U (t, r, rp) = $1 U* (1 - s, r, cp) 5 
(9.4) 

0 

where r+(t,r,ir) Is the solution found by Sobolev of the problem ofdiffractkn 

of the wave (3.1). Replacing the solution II * In (9.4) by the diffracted 

wave m* (as .In Section 2, u*; u*+ v*+ w*), we obtain function ~(t,r,cq). 

Formula (9.2) was derived with the aid of series which converge In some 

neighborhood of the front r=t and, consequently, at this stage it has 

been proved only for this neighborhood. We shall now prove that Formula 

(9.2) Is* in fact, valid throughout. 

Theorem 

equation 

and 1s of degree 

. IS nO(t,r,q) Is a homogeneous solution of the wave 

0 * 0 D 

Lu" 22 utt - urr - rlur - r-zuw = 0 

- 4 in r and t ) then 

u(t,r,rp) =ik”(t-+-%$, r,v) 

Is also a solution of this equation. 

P I‘ o o f . We have 

Lu = + (Tr& f 
3 rug $- Yj- UT0 Tq- + rv,. + ; vj 

Here 

(9.5) 



330 A.F. Flllp~ov 

v is a homogeneous function of degree - $ . According to Euler's theorem 
on homogeneous functions TUT+ rOt G- 3V/2, i.e. LU = 0 . 

Note 1. 
wave equation. 

The theorem Is also valid for generalized solutions of the 

By a generalized solution of the wave equation Lu = 0 in the region D 
we mean a function (or generalized function) u , such that for any v which 
has derivatives of all orders and is equal to zero in the neighborhood of 
the boundary D and outside some finite region 

ULV dt dx dy = 0 
D 

and 
Let u’(t,r,(p) be a homogeneous generalized solution of degree -3 in t 

r . We shall show that (9.5) Is a generalized solution, i.e. that 

J= 

D 

We Introduce the notation 

1 t2 - 9 v (t, r, Cp) -- 
2R- a, t+ F= T, 

1/l + 4a2r2+ 4aT 
= w (T, r, cp) 

Then 

J = J, + J, 

JI= 
N 

1 1 

“J 
u” (T, r, cp) ( . 

wTT - zurr - 7 wr - 2 woo r dr dTdq 
1 

D, 
* 

Jz= 
SSI 

z” CT, r, cp) (4Tw,, + 4rwT, + low,) r dr dT dv 

D, 

set 
Since u” is a generalized solution, Jo = 0 . For the Integral Jo, we 

r = PT, a" U', rr cp) = al(T, P, cp), wT (T, r, cp) = z (T, P,(P) 

Then 

J, = 
us ’ v*u, (T, P, cp) (4T”’ zr + 10 T%) p dp dT dq 

D* 

The expression in parentheses is equal to 48(T'/'z) /aT. Integrating by 
parts with respect to IT and considering that .,/%,(T,p,cp) does not depend 
on T (as a consequence of the homogeneity of u,), and that in the neighbor- 
hood of the boundary z = 0 , we obtain Jz= 0 . 

Note 2. The analogous theorem is also valid for the equation 

a/t = axis, +. ..+ U rnxn' 

if u” is a homogeneous solution of degree (1 - n)/2; here r= (XT+... +X:)6 

We now obtain solution of the problem of diffraction of a wave due to the 

source. Let II be the solution (9.4) of the problem of diffraction of the 

plane wave (913). By virtue'of the theorem and Note 1, the function 

u (t, r, ‘p) = L-- 
2371/D 

u(t +y, r,(p) (9.6) 

is a generalized solution. For t < 0 
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24 0, r, cp) = 
1 

2n I/(t + R)s - H” - r2 + 2Rr cos ((p - p) 

on account of (9.3); i.e. it coincides with the wave due to the source (9.1). 

And so, for t > 0 the function (9.6) Is the solution of the problem of 

diffraction of the wave due to the source. (The solution of this problem, 

expre-sed in another form, Is known, see [7], Chapt. 5). 

10. We shall now consider the three-dimensional problem of diffraction 

of a spherical wave due to a source by a dihedral angle (wedge) or by a cone. 

In particular, we shall consider a polyhedral angle with boundary conditions 

lb= 0 or au/an = 0 . Let r, cp, z be cylindrical coordinates. The source 

Is assumed to act at the instant t = -R at the point p = R , cp = B , 

z = 0 and the wave caused by the source to be 

u=&@fR-d) C--<t<@) 

where d is the distance from the source, 6 is the delta function. The 

wave first reaches the obstacle (a wedge with edge r = 0 or a cone with 

vertex 7 = 0 , z = 0 ) at the origin of coordinates at the Instant t = 0. 

The solution U, of the problem of diffraction of the plane wave 

ug = & 8 (t + r cos (cp - g)) U-CO) (10.1) 

Is taken as known for the same wedge or cone. In spherical coordinates p, 

cp9lJ where F = p ’20s 9, E = p sir. $, we have 

Uok r,(P, 4 = %@,P,%44 = kR8 (t + pcosgcos(cp -P)) (t<o) (10.2) 

For the wedge the solution does not depend on z and may be expressed 

by Formula 
1 au* -- 

" = 4nR at 

where the functlcn II* Is the same as in Section 3; I.e. lJ* is the solution 

of the two-dimensional problem of diffraction of a 'plane wave by a wedge 

which was found by Sobolev [l]. A method of numeric&l solution has been 

Indicated by Borovlkov [8] for some cases of the cone. 

By virtue of Note 2, the function 

(10.3) 

Is the solution of the wave equation; It obviously satisfies the boundary 

conditions. Because of Formula (10.2) and the properties of the b-function 

(a 16 (as) z 6 (z), 6 (f (4) = 9;;;” (if f(d)=O) 

we have 
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u = & 6 ((t + R)* - d2) = &. 6 (t + R _ d) for --H<t<o 

that is, for - R < t < 0 the solution (10.3) coincides with the nave caused 

by the source. Equation (10.3) Is then the solution of the problem of dif- 

fraction of a wave due to a point source by a wedge or a cone. 

In the case of wedge, this solution is known [9], but in the case of the 

cone only the geometric acoustical expansion of the diffracted wave near tne 

front has been available [lo]. 
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